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Abstract: Cerenkov luminescence tomography (CLT) is a novel and highly sensitive imaging
technique, which could obtain the three-dimensional distribution of radioactive probes to achieve
accurate tumor detection. However, the simplified radiative transfer equation and ill-conditioned
inverse problem cause a reconstruction error. In this study, a novel attention mechanism based
locally connected (AMLC) network was proposed to reduce barycenter error and improve
morphological restorability. The proposed AMLC network consisted of two main parts: a fully
connected sub-network for providing a coarse reconstruction result, and a locally connected
sub-network based on an attention matrix for refinement. Both numerical simulations and in
vivo experiments were conducted to show the superiority of the AMLC network in accuracy
and stability over existing methods (MFCNN, KNN-LC network). This method improved CLT
reconstruction performance and promoted the application of machine learning in optical imaging
research.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Cerenkov luminescence imaging (CLI) is a novel optical molecular imaging method based
on the Cerenkov radiation of nuclides [1]. Combining the advantages of optical imaging and
radionuclide imaging [2], CLI has high sensitivity and facilitates clinical transformation [3,4].
Recently, CLI has been widely used in preclinical and clinical research, such as apoptosis
visualization [5], tumor resection [6], monitoring drug therapy [7]. However, CLI is a planar
imaging method, which could not restore the internal distribution of radioactive probes [8].
Therefore, Cerenkov luminescence tomography (CLT) has been developed [9–11].

CLT matches the surface optical information with the structure information. Utilizing the
efficient photon transmission model and image reconstruction algorithm, the three-dimensional
(3D) distribution of specific molecular probes in biological tissue could be restored from the
surface optical signals. CLT reconstruction consists of two main steps: forward problem solving
and inverse problem solving [12–14]. To solve the forward problem, a mathematical model
is conducted to describe the photon transmission process and establish the mapping from the
3D distribution of the source to the surface signal. The inverse problem solving is to restore
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the 3D distribution of sources in organisms based on the distribution of surface signals [15].
Several model-based methods were proposed to solve the ill-posed problems. Diffusion equation
and simplified spherical harmonics equation were applied to simplify the radiative transfer
equation [16–18]. The weighted combination of spectral information was applied to optimize
CLT performance [19,20]. For the inverse problem, the prior information was introduced to
reduce the ill-posedness. Greedy strategy [21] and iterative optimization strategy [22] were
widely applied. Besides, more researchers focused on the relationship between adjacent nodes to
establish regular terms [23,24]. Although ideal reconstruction results could be obtained by these
strategies, time cost and approximation error still limit the application of CLT.

Recently, machine learning strategies are widely used in medicine [25]. The development
of machine learning shows great potential in optical tomography reconstruction. Through
end-to-end learning, the reconstruction methods based on machine learning could fundamentally
avoid approximation errors. A Gated Recurrent Unit based network was proposed to improve
the accuracy and speed of single-source reconstruction [26]. Meanwhile, a 3D encoder-decoder
network achieved dual-source fluorescence molecular tomography (FMT) reconstruction [27].
However, in vivo experiments were absent. Recently, a fusion dual-sampling UHR-DeepFMT
method achieved in vivo glass tubes reconstruction, which greatly improved the spatial resolution
of reconstruction [28]. In addition, finite element mesh method provides another thought for
optical reconstruction. The in vivo reconstructions of the bioluminescence tomography (BLT)
and CLT were implemented respectively with an inverse problem simulation [29] and a multilayer
fully connected neural network (MFCNN) [30]. The combination of K-nearest neighbors strategy
and ResNet improved the morphological reconstruction of FMT [31]. However, the complicated
process of K selection limited its application. Although significant progress has been made in
optical tomography reconstruction, the over-sparse problem and the differences between datasets
still affect the accuracy of reconstruction.

In this study, an attention mechanism based locally connected (AMLC) network was proposed
to improve CLT reconstruction performance. AMLC network was inspired by KNN-LC network,
which had great performance in solving over-sparse problem. The fully connected (FC) sub-
network provided a coarse result, which was used to establish the attention matrix. Based on
it, the locally connected (LC) sub-network was conducted. Numerical simulation experiments
and in vivo experiments were carried out to assess AMLC network performance. Meanwhile,
MFCNN and KNN-LC network were used for comparisons. The experimental results revealed
significant improvement in tumor localization and morphological restoration. The research flow
diagram is provided in Supplement 1 (Fig. S1).

2. Methods

2.1. Machine learning for CLT reconstruction

CLT reconstruction methods based on machine learning use neural network to establish end-
to-end mapping and directly reconstruct the internal source. Thus, the deviation between the
simplified photon propagation process and the real photon propagation process could be avoided.
Parameters of the nonlinear mapping are directly obtained from statistical learning. The objective
function is described as follows:

min
∥︁∥︁fs(X |θ) − Y

∥︁∥︁2
2 (1)

where f s represents the reconstruction system. θ is the system weight which is updated by
minimizing the mean square error. The system input is the surface photon intensity X and the
output is the reconstructed source Y.
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2.2. Structure of the AMLC network

AMLC network consisted of two main parts: the FC sub-network for the acquisition of coarse
results and the LC sub-network for residual optimization (Fig. 1). Attention mechanism was
introduced to optimize the residual between coarse results and targets. Specifically, surface
photon density was first fed to the FC sub-network to obtain a coarse source. Then the residual
was generated from the LC sub-network, and it was combined with the coarse result into the final
reconstruction result. The whole CLT reconstruction procedure can be defined as:

min
∥︁∥︁fFC(X |θ1) − Y

∥︁∥︁2
2 + λ

∥︁∥︁fLC(YFC |θ2) − |YFC − Y |
∥︁∥︁2

2 (2)

where f FC is the FC sub-network with weights θ1, while f LC represents the LC sub-network with
weights θ2. The output of the FC sub-network is YFC. The system input is the surface photon
intensity X, and the output is the reconstructed source Y. A parameter λ is added to balance the
two losses, which is set to 0.2 in our experiment.

Fig. 1. The overall pipeline of AMLC network. The blue blocks represent the fully
connected (FC) sub-network. The yellow blocks represent the locally connected (LC)
sub-network. Attention matrix is constructed based on coarse results.

The FC sub-network used four fully connected layers to obtain the coarse results. The activation
function was Rectified linear unit (ReLU).

ReLU =
⎧⎪⎪⎨⎪⎪⎩

0, x<0

x, x ≥ 0
(3)

The LC sub-network consisted of five locally connected layers. The number of neurons in
each layer was consistent with the dimension of the coarse results. Therefore, the output nodes of
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each layer and the input nodes of the next layer could form a square matrix. AMLC network used
photon intensity as a restriction. Each dimension in the coarse results recorded photon intensity.
Based on the attention mechanism, important dimensions were selected as the main nodes for
connection.

Specifically, the photon intensity in each dimension was summed from the coarse results and
labels. A SoftMax function was applied to calculate the probability. Due to the huge cardinality,
plenty of vertices were closed to zero. For the nonzero locations, the value was set to 1 to indicate
that they were more important. After that, two sets of one-dimensional vectors were obtained
with values of only 0 and 1. The vector from the coarse results was used to constrain the input
nodes, while the vector from the labels was applied to constrain the output nodes. Nodes were
disconnected only if both input and output values were 0. The attention matrix A is defined as:

A = (aij)m×m (4)

aij =

⎧⎪⎪⎨⎪⎪⎩
0, VCRi = 0 and VLj = 0

1, VCRi = 1 or VLj = 1
(5)

where aij shows the relationship between the input and output nodes. VCRi represents the ith
dimension of the vector calculated by the coarse results. VLj indicates the jth dimension of the
label vector. When VCRi and VLj are both 0, nodes i and j are disconnected, otherwise they are
connected.

In this study, the whole numerical mouse head model was composed of 11494 single discrete
points, including 1965 coordinate points for the brain and 2723 coordinate points for the surface
tissue. Based on the distribution of surface vertices, the number of neurons in the first layer of
the FC sub-network was set to 2723. The mean square error was adopted as the loss function.
AMLC network was trained for 400 epochs with a batch size of 128. The optimization function
was Adam optimizer with a learning rate of 0.001, β1 of 0.9, and β2 of 0.99.

2.3. Optical parameters and simulation dataset

As a data-driven method, AMLC network needed plenty of samples for model training. Monte
Carlo simulation was used as an alternative method to overcome the difficulty of obtaining a large
amount of in vivo experimental data. As mentioned above, the finite element method was used to
divide the numerical mouse head into a standard mesh. Three main organs were chosen from the
segmented CT data: muscle, skull, and brain, to simulate photon propagation in the head. The
absorption coefficient µa and the scattering coefficient µs were acquired from previous study in
Table 1 [30]. With Monte Carlo simulation method, thousands of samples were collected to train
the network. Each sample was obtained from a standard mesh.

Table 1. Optical parameters of main organs

Organ Absorption coefficient µa Scattering coefficient µs

Brain 0.0389 17.134

Skull 0.0807 20.690

Muscle 0.1154 4.674

In the previous research, small sample size, single sample type and rough assembly affected
the reconstruction results to some extent. In this study, we enlarged the sample size, changed the
source shape, optimized the big-source generation strategy, and generated a dataset dominated
by dual-source samples. 100,000 photons were assigned to each generated source sample. The
photon wavelength was set to 650nm to ensure appropriate penetration and photon intensity
[19,20]. Furthermore, different types of sources were assigned to increase data diversity. 439
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centers of ellipsoid sources, 418 centers of cylinder sources, and 393 centers of cuboid sources
were collected in the reconstruction permissible region (Table 2). Simulations of each center
were repeated for 4 times to ensure the randomness of photon propagation. In conclusion, 5000
single-source samples were obtained with three different shapes and 1250 different locations.

Table 2. Features of single-source simulation

Shape of the source Size of the source (mm) Number of the center Number of the source

Ellipsoid Radius 0.5 439 1756

Cylinder Long axis 1; Short axis 0.6; Height 2 418 1672

Cube Length 2; Width 1; Height 1 393 1572

Dual-source samples were assembled by single-source samples to improve the universality
of CLT reconstruction. Different positions were selected and combined randomly to generate
the composite sources. Specifically, each single-source sample had a corresponding central
coordinate. In the reconstruction feasible region, two samples of single-source with different
coordinates were randomly selected for combination. At the same time, a weighted sum of source
intensities was performed to get the photon intensity of a dual-source sample. The assembly
formulas of surface photon intensity and actual source of multi-source samples were as follows:

Xmul =
∑︂
i∈ss

Xi (6)

Ymul =
∑︂
i∈ss

Yi (7)

where Xmul represents the assembled surface photon and Ymul represents the assembled source. SS
is the set of the generated single-source samples. Two single-source samples (n= 2) are selected
randomly to assemble the dual-source sample.

The structure of big-source sample was similar to that of dual-source. A single-source sample
was selected as the center to assemble the nearest single-source samples into a whole [31].
Considering the randomness of central positions and sizes, only a certain quantity of the assembly
was achievable. Therefore, another 500 different centers were generated to avoid the assembly
errors. The details of sample parameters and sizes were shown in Table 3.

Table 3. Features of big-source simulation

Shape of the source Size of the source (mm) Number of the center Number of the source

Ellipsoid Radius 1 180 720

Cylinder Long axis 2; Short axis 1.2; Height 4 160 640

Cube Length 4; Width 2; Height 2 160 640

In conclusion, we generated 5000 single-source samples, 7800 dual-source samples (3000
spheroid sources, 2400 cylindroid sources, and 2400 cuboid sources), and 2000 big-source
samples. 80% of the dataset was used for training and 20% for testing. The simulation dataset
was generated in Molecular Optical Simulation Environment (MOSE 2.3) [32].

2.4. Numerical simulation experiments

Based on the standard mesh, several numerical simulation experiments were carried out to
evaluate the performance of AMLC network. MFCNN and KNN-LC network were used for
comparisons. Simulation experiments of single-source, dual-source and big-source were designed
to verify the location accuracy and morphology restorability. Furthermore, a group of sources at
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different depth was generated to explore the effect of depth on reconstruction. Also, we designed
a dual-source distance experiment. The center distance was set at 2.5, 3.0 and 3.5 mm to evaluate
the reconstruction performance in close sources. Besides, the anti-noise simulation experiment
evaluated the robustness of AMLC network. Jupyter Notebook and Python 3.6 were used to train
and test three networks. All the numerical simulation experiments were conducted on a personal
computer with an Intel Core i7 CPU (4.00 GHz) and an NVidia GTX1080 Ti GPU.

2.5. In vivo experiments

Cell line U87MG-Luc-GFP was used to conduct the tumor model. 11C-methionine (11C-MET)
was chosen as the probe to generate Cerenkov photons. The centrifuged cells (approximately 4 ×

106) were mixed with an equal volume of phosphate buffered saline and injected into the mouse
head through a micro-injector [30]. BLI was used to observe tumor growth every three days. The
glioma model was applied to CLT in vivo experiments after one week of growth.

The MRI data (M3, Aspect Imaging, Israel) was obtained firstly. Then, in vivo CLI was
obtained from a pentamodal imaging system [33]. Meanwhile, small animal PET (GENISYS4,
Sofie Biosciences, USA) was applied to verify the radionuclide accumulation. Considering the
extremely short half-life of 11C-MET, the mouse was transferred to PET acquisition immediately.
CT data was obtained from a micro-CT system to acquire the structural information of mouse
head. Based on CT data, CLI data was mapped to the standard mesh as network input. In vivo
experiments were carried out under 1% isoflurane - oxygen mixture gas anesthesia. All the
animal experiments were performed under the guidelines of the Institutional Animal Care and
Use Committee of the Fifth Affiliated Hospital, Sun Yat-sen University.

After in vivo imaging, glioma mouse model was sacrificed. First, green fluorescent protein
(GFP) images were collected from the frozen sections of the mouse head. Then the frozen
sections were stained with hematoxylin and eosin (H&E). Since cell line was labeled with green
fluorescent protein (GFP), GFP images and H&E stained results were considered as the gold
standard.

2.6. Evaluation index

The reconstruction results were quantitatively evaluated with the barycenter error (BCE) [31]
and Dice index [30]. BCE was used to measure the location error between the reconstructed
result and the actual source. The equation was shown as follows:

PS =

(︃∑︁
i∈S

ci×li
)︃

∑︁
i∈S

li
(8)

BCE =
∥︁∥︁Pr − Pt

∥︁∥︁
2 (9)

where S is the set of the standard mesh vertex. ci represents the vertex coordinates and li is the
intensity. Pr and Pt represent the weighted photon intensity of reconstructed source and actual
source, respectively. A smaller deviation is expected.

Also, Dice was applied to assess shape recovery capability. The value of Dice is between
0 and 1. Large Dice represented high morphological similarity and excellent reconstruction
performance. The equation was defined:

Dice =
2|A∩B|
|A| + |B|

(10)

where A represents the set of reconstructed sources and B represents the set of actual sources.
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3. Results

In this section, numerical simulation and in vivo experiments were carried out to assess AMLC
network in terms of location capability, morphology restorability, robustness, and in vivo
feasibility. This section contained six main experiments, including single-source reconstruction,
dual-source reconstruction, big-source reconstruction, anti-noise performance experiments, and
in vivo experiments. Besides, two additional experiments were conducted to further explore the
influence of distance and depth.

3.1. Single-source reconstruction

The quantitative analysis of the validation set was shown in Table 4. Three samples, which named
model 1, model 2 and model 3 were selected from three different sources to show single-source
reconstruction results (Fig. 2). 3D views and 2D cross sections reflected source shapes directly.

Table 4. Quantitative comparison of single-source simulation (mean±SD)

Method MFCNN KNN-LC AMLC

BCE (mm) 0.54± 0.43 0.46± 0.34 0.37± 0.30

Dice 0.74± 0.16 0.78± 0.15 0.81± 0.13

In 3D view, the BCE of AMLC network and KNN-LC network were less than that of MFCNN in
model 1 and model 3. Although KNN-LC network achieved accurate positioning, the morphology
recovery was unsatisfactory compared with AMLC network in model 3. The model 2 was chosen
to demonstrate that AMLC network also achieved an excellent result when MFCNN obtained
small BCE. Similar results were also observed in 2D cross sections.

From Table 4, AMLC network showed the minimum mean BCE (0.37 mm) and the maximum
mean Dice (0.81) among three methods. More specifically, AMLC network achieved the most
accurate CLT reconstruction for model 1, with the minimum BCE (0.05 mm) and the maximum
Dice (0.83). These qualitative and quantitative results proved AMLC network was more accurate
in single-source reconstruction.

To further verify the superiority of AMLC network, the results of depth experiment were
shown in Supplement 1 (Fig. S2). All three methods realized the source reconstruction at
different depths. With the change of depth, the reconstruction results had different degrees of
distortion. Quantitative and qualitative analysis show that AMLC network was more accurate
and stable in depth experiment.

3.2. Dual-source reconstruction

Different from the single-source experiment, BCE was considered as the main evaluation index
in dual-source reconstruction. The mean BCE of each sub-source in the validation set was
calculated and shown in Table 5. The results were consistent with the former experiments.
AMLC network obtained the minimum BCE.

Table 5. Quantitative comparison of dual-source simulation (mean±SD)

Method MFCNN KNN-LC AMLC

BCE1 (mm) 0.64± 0.33 0.59± 0.34 0.46± 0.30

BCE2 (mm) 0.63± 0.32 0.54± 0.33 0.46± 0.29

Total BCE (mm) 1.27± 0.68 1.13± 0.45 0.93± 0.34

Another three samples were selected to show dual-source reconstruction results. Both 3D views
and 2D cross sections were provided in Supplement 1 (Fig. S3). Quantitative and qualitative
analysis show that AMLC network could achieve more accurate dual-source reconstruction.

https://doi.org/10.6084/m9.figshare.16982074
https://doi.org/10.6084/m9.figshare.16982074
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Fig. 2. CLT reconstruction results of single-source. (a-c) show simulation results in different
methods, respectively. 3D views and 2D cross sections visually display the reconstruction
results. (d) represents BCE of the reconstructed sources, while (e) represents Dice of the
reconstructed sources. The mean BCE and Dice of three models are shown in (d) and (e),
respectively.
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Fig. 3. CLT reconstruction results of distance experiment. (a-c) show simulation results in
different gaps varied from 3.5 to 2.5 mm. Both 3D views and 2D cross sections visually
display the reconstruction results. (d-e) represent S1 BCE and S2 BCE, respectively.

To further evaluate the performance, we narrowed the gap between the two sources. The center
distance was set as 2.5 (Fig. 3(a)), 3.0 (Fig. 3(b)) and 3.5 mm (Fig. 3(c)), respectively. As shown
in Fig. 3, all three networks had completed the dual-source localization when the barycenter
center gap was greater than 3.0 mm. However, when it came to 2.5 mm, it was hard to distinguish
dual-source border from the results of MFCNN. When the center distance came to 3.0 mm, S2
source of KNN-LC network was biased. Quantitative analysis was shown in Fig. (d) and (e).
The results of AMLC network obtained the minimum mean BCE. These comparisons further
verified the superiority of AMLC network in close source reconstruction.
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Table 6. Quantitative comparison of big -source simulation (mean±SD)

Method MFCNN KNN-LC AMLC

BCE (mm) 0.25± 0.18 0.16± 0.07 0.14± 0.08

Dice 0.78± 0.06 0.84± 0.06 0.86± 0.05

3.3. Big-source reconstruction

The mean BCE and Dice of validation set were calculated and shown in Table 6 to analyze the
reconstruction ability of big-source. As shown in Fig. 4, a big-source sample was selected to
show the reconstruction results directly.

Fig. 4. CLT reconstruction results of the big-source. (a) shows the 3D views and 2D cross
sections in different methods. Quantitative analysis is shown in (b-c).

The results in Table 6 were consistent with the previous experiments. The mean BCE of
AMLC network was 0.14 which showed a high positioning accuracy. At the same time, AMLC
network also obtained the maximum Dice, which meant the morphology of the source obtained
the best recovery. These comparisons showed that AMLC network achieved more accurate
reconstruction.

3.4. Anti-noise performance experiment

Three different gradients of Gaussian noise were applied in surface photon intensity to assess
the stability of AMLC network. Gauss1, Gauss2 and Gauss3 represented 5%, 10% and 15%
Gaussian noise, respectively. A single-source sample was chosen to show the results in 3D view
and 2D transverse sections, directly. Deviations could be observed in the histograms (Fig. 5).
Although BCE increased and Dice decreased after adding noise, location and morphological
information can be restored. These results demonstrated that AMLC network was robust.

3.5. In vivo CLT reconstruction

An orthotopic glioma model was used to assess in vivo feasibility of AMLC network. Multi-
modality in vivo imaging results were shown in Fig. 6. The reconstructed results were fused with
the corresponding MRI data through image registration.
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Fig. 5. CLT reconstruction results of the anti-noise experiment. (a) shows the 3D views and
2D cross sections in different gradients. G0 represents the reconstruction results without
noise. G1, G2 and G3 represent independent simulations with 5%,10% and 15% Gaussian
noise. Quantitative analysis is shown in (b-c).

Fig. 6. In vivo experimental results. (a-c) show the white light (WL) image, CLI and BLI
results, respectively. (d-f) show the in vivo PET results. The yellow arrows show the tumor
area. (g-h) represent GFP fluorescence image and the H&E stain result. (i-l) show the
reconstruction results merged with MRI to evaluate reconstruction performance.

As shown in Fig. 6, both BLI and CLI provided the accurate tumor location. In addition to the
head, CLI signals were also observed in the neck of the mouse during signal acquisition. All the
results proved that in vivo CLI could obtain tumor localization, which provided the basis for CLT
reconstruction.

Enhanced T1 MRI, GFP fluorescence image, and H&E stained image were compared to assess
the reconstruction results of the three approaches. The merged CLT-MRI images showed high
consistency. The Dice between frozen section and CLT reconstruction was listed in Table 7.
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Compared with other methods, AMLC network obtained the maximum Dice of 0.69. All the
observations demonstrated that AMLC network achieved accurate in vivo CLT reconstruction.

Table 7. Quantitative evaluation (mean±SD) of in vivo experiment

Method MFCNN KNN-LC AMLC

Dice 0.42 0.51 0.69

4. Discussion and conclusion

CLT is an emerging and highly sensitive imaging method which combines optical information
with anatomical information. However, high time cost, complicated solving process, and
significant approximation error seriously influence the application of traditional model-based
CLT reconstruction methods. Neural networks such as KNN-LC network and MFCNN have
achieved optical tomography reconstruction, which encourages us to explore novel applications of
machine learning. In this study, an AMLC network was proposed to improve CLT reconstruction
performance.

Compared with the previous researches, we optimized the dataset and innovated the network
structure to obtain better reconstruction results. The diversity of the dataset was improved by
amplifying the number and type of the samples, and the attention mechanism was introduced
to make the network flexible. Specifically, we generated 5000 single-source samples, 2000
big-source samples, and assembled 7800 dual-source samples. Compared with MFCNN method,
the number of samples in the training set was expanded. And compared with KNN-LC network,
the types of sources were enriched. A series of experiments were designed to evaluate its
reconstruction performance. Experimental results verify the accuracy and stability of AMLC
network in CLT reconstruction.

During the numerical simulations, the reconstruction results were evaluated from quantitative
and qualitative perspectives. AMLC network got the highest Dice and the lowest BCE. Compared
with MFCNN method, the reconstruction results were obviously improved in morphology
restorability and location capability. These results demonstrated that the residual learning module
optimized the sparse problem and improved the morphological reconstruction. Meanwhile,
the lowest BCE indicated the superiority of AMLC network in location reconstruction. The
constraint of AMLC network is the data itself, while KNN-LC network is constrained by location
information. Once the value of k is determined, KNN-LC network is fixed. On the contrary,
the structure of the LC sub-network based on attention matrix dynamically changes with data.
Therefore, AMLC network might generalize better to various types of data.

In in vivo experiments, an orthotropic glioma model was constructed to further verify the
superiority of AMLC network. The CLI result was similar to the BLI result, which provided a
basis for in vivo 3D reconstruction. PET results were shown in various views to demonstrate
that 11C-MET was ingested by glioma. The signals in the necks of the model were probably
caused by brown adipose tissue. As the mouse was under gas anesthesia, their muscles shivered
from the cold. Brown adipose tissue mainly existed in the neck. Due to cold stimulation and
high metabolism, there were more radionuclide probes and stronger CLI signals. Although
all three networks had achieved location reconstruction, the result of MFCNN was obviously
over-sparse. KNN-LC optimized it to some extent, but lost part of morphological information.
AMLC network achieved the highest Dice of 0.69. It was believed that the combination of MRI,
PET and AMLC network may improve the accuracy of tumor detection.

Although the well-trained AMLC network performs well in CLT reconstruction, some flaws
still exist and restrict its application. AMLC network is a data-driven method and the quantity and
quality of the dataset largely determine the reconstruction performance. Different data sets should
match different types of tumors. Also, an extra optimization procedure is required to balance the
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errors between the standard mesh and the actual structure. Combined with model-based CLT
reconstruction methods, the limitations might be overcome, which would be explored in our
future work.

In conclusion, a novel AMLC network has been proposed to achieve more accurate and stable
CLT reconstruction. Attention mechanism was introduced to optimize the residual between
coarse results and targets. The well-trained AMLC network has shown excellent performance
in both numerical simulations and in vivo experiments. To our best knowledge, it is the first
study that combined attention mechanism with CLT reconstruction, which would promote the
application of machine learning in optical tomography reconstruction.
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